Stein Block Thresholding For Image Denoising
نویسندگان
چکیده
In this paper, we investigate the minimax properties of Stein block thresholding in any dimension d with a particular emphasis on d = 2. Towards this goal, we consider a frame coefficient space over which minimaxity is proved. The choice of this space is inspired by the characterization provided in [5] of family of smoothness spaces on R d, a subclass of so-called decomposition spaces [28]. These smoothness spaces cover the classical case of Besov spaces, as well as smoothness spaces corresponding to curvelet-type constructions. Our main theoretical result investigates the minimax rates over these decomposition spaces, and shows that our block estimator can achieve the optimal minimax rate, or is at least nearly-minimax (up to a log factor) in the least favorable situation. Another contribution is that the minimax rates given here are stated for a noise sequence model in the transform coefficient domain satisfying some mild assumptions. This covers for instance the Gaussian case with frames where the noise is not white in the coefficient domain. The choice of the threshold parameter is theoretically discussed and its optimal value is stated for some noise models such as the (non-necessarily i.i.d.) Gaussian case. We provide a simple, fast and a practical procedure. We also report a comprehensive simulation study to support our theoretical findings. The practical performance of our Stein block denoising compares very favorably to the BLS-GSM state-of-the art denoising algorithm on a large set of test images. A toolbox is made available for download on the Internet to reproduce the results discussed in this paper.
منابع مشابه
Denoising by Time - Frequency Block Thresholding
Abstract— For audio denoising, diagonal thresholding estimators of spectrogram coefficients produce a “musical noise” that degrades audio perception. We introduce a block thresholding which produces hardly any musical noise and improves the SNR compared to diagonal thresholdings or Ephraim and Malah estimators. Spectrogram coefficients are grouped into blocks to compute attenuation factors. Thi...
متن کاملACCURATE PREDICTION OF PHASE TRANSITIONS IN COMPRESSED SENSING VIA A CONNECTION TO MINIMAX DENOISING By
Compressed sensing posits that, within limits, one can undersample a sparse signal and yet reconstruct it accurately. Knowing the precise limits to such undersampling is important both for theory and practice. We present a formula precisely delineating the allowable degree of of undersampling of generalized sparse objects. The formula applies to Approximate Message Passing (AMP) algorithms for ...
متن کاملStein block thresholding for wavelet-based image deconvolution
Abstract: In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov ...
متن کاملA Novel NeighShrink Correction Algorithm in Image Denoising
Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008